A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.

نویسندگان

  • Kai Keng Ang
  • Karen Sui Geok Chua
  • Kok Soon Phua
  • Chuanchu Wang
  • Zheng Yang Chin
  • Christopher Wee Keong Kuah
  • Wilson Low
  • Cuntai Guan
چکیده

Electroencephalography (EEG)-based motor imagery (MI) brain-computer interface (BCI) technology has the potential to restore motor function by inducing activity-dependent brain plasticity. The purpose of this study was to investigate the efficacy of an EEG-based MI BCI system coupled with MIT-Manus shoulder-elbow robotic feedback (BCI-Manus) for subjects with chronic stroke with upper-limb hemiparesis. In this single-blind, randomized trial, 26 hemiplegic subjects (Fugl-Meyer Assessment of Motor Recovery After Stroke [FMMA] score, 4-40; 16 men; mean age, 51.4 years; mean stroke duration, 297.4 days), prescreened with the ability to use the MI BCI, were randomly allocated to BCI-Manus or Manus therapy, lasting 18 hours over 4 weeks. Efficacy was measured using upper-extremity FMMA scores at weeks 0, 2, 4 and 12. ElEG data from subjects allocated to BCI-Manus were quantified using the revised brain symmetry index (rBSI) and analyzed for correlation with the improvements in FMMA score. Eleven and 15 subjects underwent BCI-Manus and Manus therapy, respectively. One subject in the Manus group dropped out. Mean total FMMA scores at weeks 0, 2, 4, and 12 weeks improved for both groups: 26.3±10.3, 27.4±12.0, 30.8±13.8, and 31.5±13.5 for BCI-Manus and 26.6±18.9, 29.9±20.6, 32.9±21.4, and 33.9±20.2 for Manus, with no intergroup differences (P=.51). More subjects attained further gains in FMMA scores at week 12 from BCI-Manus (7 of 11 [63.6%]) than Manus (5 of 14 [35.7%]). A negative correlation was found between the rBSI and FMMA score improvement (P=.044). BCI-Manus therapy was well tolerated and not associated with adverse events. In conclusion, BCI-Manus therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. Motor gains were comparable to those attained with intensive robotic therapy (1,040 repetitions/session) despite reduced arm exercise repetitions using EEG-based MI-triggered robotic feedback (136 repetitions/session). The correlation of rBSI with motor improvements suggests that the rBSI can be used as a prognostic measure for BCI-based stroke rehabilitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10-50), recruited after...

متن کامل

Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical tr...

متن کامل

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical EEG and neuroscience

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2015